Application Layer Overview and
Web/HTTP

2: Application Layer 1

Some network apps

O E-mail 3 Internet telephone
0 Web 7 Real-time video

0 Instant messaging conference

7 Remote login 3 Massive parallel

3 P2P file sharing computing

3 Multi-user network
games

0 Streaming stored
video clips

2: Application Layer 2

Creating a hetwork app

Write programs that

O run on different end
systems and

O communicate over a
nhetwork.

O e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core

O Network core devices do
not function at app layer

o This design allows for
rapid app development

transport

application

network

data link

hysical

application

transport

network

data link

physical

&

€

@

&

transport

network

data link

physical

2: Application Layer

3

Application architectures

3 Client-server
7 Peer-to-peer (P2P)
O Hybrid of client-server and P2P

2: Application Layer 4

Client-server archicture

server:
O always-on host
O permanent IP address
o server farms for scaling

clients:
O communicate with server

O may be intermittently
connected

O may have dynamic IP
addresses

O do not communicate
directly with each other

Examples?

2: Application Layer

Pure P2P architecture

3 no always on server

O arbitrary end systems
directly communicate

O peers are intermittently
connected and change IP
addresses

0 example: Gnutella

Highly scalable

But difficult fo manage

2: Application Layer

Hybrid of client-server and P2P

Napster
o File transfer P2P

O File search centralized:
- Peers register content at central server
- Peers query same central server to locate content

Instant messaging
O Chatting between two users is P2P

O Presence detection/location centralized:

* User registers its IP address with central server
when it comes online

- User contacts central server to find IP addresses of
buddies

2: Application Layer 7

Processes communicating

Process: program running
within a host.

3 within same host, two
processes communicate
using inter-process
communication (defined
by OS).

O processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

3 Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer

8

Sockets

O process sends/receives
messages to/from its
socket = controlled by

& app developer
0 socket analogous to door

O sending process shoves

message out door TCP with
: . buffers [T
O sending process relies on D
) variables
transport infrastructure
on other side of door which "
. controlle
brings message to socket by OS

at receiving process

host or

TCP with
buffers,
variables

3 APT: (1) choice of transport protocol; (2) ability to fix

a few parameters (lots more on this later)

2: Application Layer 9

Port Numbers

IP =138.110.1.1

2: Application Layer 10

App-layer protocol defines

7 Types of messages Public-domain protocols:

exchanged, eg, request defined in RFCs
& response messages 3 allows for

O Syntax of message interoperability

types: what fields. in A eg, HTTP, SMTP
messages & how fields . |
are delineated Proprietary protocols:
J Semantics of the 0 eg, KaZaA
fields, ie, meaning of
information in fields
O Rules for when and

how processes send &

r‘eSPOﬂd To meSSGges 2: Application Layer 11

Applications and App-Layer Protocols

Ul

Web Browser

Web Server

HTTP

2:|Applicatio

File
Access

in Layer 12

What transport service does an app need?

Data loss Bandwidth
0 some apps (e.g., audio) can 5 some apps (e.g.,
tolerate some loss multimedia) require

0 other apps (e.g., file , minimum amount of
transfer, telnet) require bandwidth to be
100% reliable data “effective”
transfer " .

Timi 3 other apps (“elastic
'ming apps") make use of

7 some apps (e.g., whatever bandwidth
Internet telephony, they get

intferactive games)
require low delay to be
“effective”

2: Application Layer 13

Transport service requirements of common apps

Application Dataloss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 100's msec
video:10kbps-5Mbps

stored audio/video loss-tolerant same as above yes, few secs
interactive games |oss-tolerant few kbps up yes, 100's msec
instant messaging no loss elastic yes and no

2: Application Layer 14

Internet transport protocols services

TCP service: UDP service:

O connection-oriented: setup O unreliable data transfer
required between client and between sending and
server processes receiving process

O reliable transport between T does not provide:
sending and receiving process connection setup,

reliability, flow control,
congestion control, fiming,
or bandwidth guarantee

3 flow control: sender won't
overwhelm receiver

O congestion control: throttle

sender when network
overloaded Q: why bother? Why is

7 does not provide: timing, there a UDP?
minimum bandwidth
guarantees

2: Application Layer 15

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia proprietary TCP or UDP
(e.g. RealNetworks)
Internet telephony proprietary
(e.g., Dialpad) typically UDP

2: Application Layer

16

Web and HTTP

First some jargon
0 Web page consists of objects

3 Object can be HTML file, JPEG image, Java
applet, audio file,...

0 Web page consists of base HTML-file which
includes several referenced objects

O Each object is addressable by a URL
0 Example URL:

www . someschool .edu/someDept/pic.gif

——— ——

host hame path name

2: Application Layer 17

HTTP overview

HTTP: hypertext
transfer protocol

0 Web's application layer
protocol

3 client/server model

o client: browser that
requests, receives,
“displays” Web objects

O server: Web server
sends objects in
response to requests

0 HTTP 1.0: RFC 1945
0 HTTP 1.1: RFC 2068

PC running A/
Explorer T

Server
running
Apache Web
server

Mac running
Navigator

2: Application Layer 18

HTTP overview (continued)

Uses TCP:

3 client initiates TCP
connection (creates socket)
to server, port 80

O server accepts TCP
connection from client

0 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

[TCP connection closed

HTTP is "stateless”

O server maintains no
information about
past client requests

——aside
Protocols that maintain

"state"” are complex!

O past history (state) must
be maintained

3 if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 19

HTTP

PC running
Explorer

2: Application Layer 20

HTTP connections

Nonpersistent HTTP Persistent HTTP

0 At most one objectis O Multiple objects can
sent over a TCP be sent over single
connection. TCP connection

7 HTTP/1.0 uses between client and
nonpersistent HT TP server.

3 HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 21

NongersusTenT HTT

oK —
‘w
Data —

v : TCP Clos® B v 2: Application Layer 22

Response time modeling

Definition of RRT: time to
send a small packet to
travel from client to
server and back. initiate TCP____

connection [
3 one RTT to initiate TCP request _L /

connection file - (\ .

< .

3 one RTT for‘ HTTP \ /}E?ensnnt
file —

request and first few
bytes of HTTP response
to return . :

time time
3 file transmission time
total = 2RTT+transmit time

received

2: Application Layer 23

Persistent HT TP

Nonpersistent HTTP issues: Persistent without pipelining:

7 requires 2 RTTs per object O client issues new request

7 OS must work and allocate only when previous .
host resources for each TCP response has been received
connection 7 one RTT for each

O but browsers often open referenced object

parallel TCP connections to Persistent with pipelining:
fetch referenced objects 3 default in HTTP/1.1

Persistent HTTP 3 client sends requests as

O server leaves connection soon as it encounters a
open after sending response referenced object

7 subsequent HTTP messages O as little as one RTT for all
between same client/server the referenced objects

are sent over connection

2: Application Layer 24

Per'5|s’ren’r HTTP

Data —
4T
SET sam; -
JPg
Data —
o CP Close —

v v 2: Application Layer 25

HTTP request message

0 two types of HT TP messages: request, response

3 HTTP request message:
O ASCII (human-readable format)

request line

(GET, POST,\‘_GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool.edu
User-agent: Mozilla/4.0
header | connection: close

lines Accept-language:fr

Carriage return _ _
Img feed /extra carriage return, line feed)

indicates end

of message
2: Application Layer 26

HTTP request message: general format

F | request
line

header
ines

Entity Body

2: Application Layer 27

Uploading form input

Post method:

3 Web page often
includes form input

3 Input is uploaded to
server in entity body

URL method:

A Uses GET method

3 Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeysé&banana

2: Application Layer 28

Method types

HTTP/1.0 HTTP/1.1
0 GET 0J GET, POST, HEAD
0 POST 0 PUT
7 HEAD O uploads file in entity
body to path specified
O asks server to leave Dody To p pec
requested object out of in URL field
response 0 DELETE
O deletes file specified in
the URL field

2: Application Layer 29

HTTP response message

status line
(protocol
status code\‘_ HTTP/1.1 200 OK
status phrase) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
header | Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821
Content-Type: text/html

lines

Ckﬁa,egu-/////a data data data data data
requested

HTML file

2: Application Layer 30

HTTP response status codes

In first line in server->client response message.
A few sample codes:

200 OK
O request succeeded, requested object later in this message
301 Moved Permanently

O requested object moved, new location specified later in
this message (Location:)

400 Bad Request

O request message not understood by server
404 Not Found

O requested document not found on this server
505 HTTP Version Not Supported

2: Application Layer 31

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent

to port 80 aft cis.poly.edu

2. Type ina GET HTTP request:

GET /~ross/ HTTP/1.1 By typing this in (hit carriage
Host: cis.poly.edu return twice), you send

this minimal (but complete)
| GET request o HTTP server

3. Look at response message sent by HT TP server!

2: Application Layer 32

User-server state: cookies

Many major Web sites
use cookies

Four components:

1) cookie header line in
the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user's host and managed
by user’s browser

4) back-end database at
Web site

Example:

O Susan access Internet
always from same PC

O She visits a specific e-
commerce site for first

time

o When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for

ID

2: Application Layer

33

Cookies: keeping "state” (cont.)

Cookie file
ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

Cookie file

amazon: 1678
ebay: 8734

client

—

usual http request msg

usual http response +
+ Set-cookie: 1678

usual http request msg
cookie: 1678

server

N

— creates ID %, %4
1678 for user

— specific

usual http response msg

usual http request msg
cookie: 1678

\»

—

usual http response msg

server R

cookie-

action

cookie-
spectific
action

2: Application Layer 34

Cookies (continued)

What cookies can bring:

aside

Cookies and privacy:

7 authorization
3 shopping carts
7 recommendations

J user session state
(Web e-mail)

O cookies permit sites to
learn a lot about you

3 you may supply name
and e-mail to sites

0 search engines use
redirection & cookies
to learn yet more

O advertising companies
obtain info across
sites

2: Application Layer 35

Web caches (proxy server)

Goal: satisfy client request without involving origin server

O user sets browser: Web origin
accesses via cache server

3 browser sends all HTTP
requests to cache s

O object in cache: cache
returns object

O else cache requests
object from origin
server, then returns
object to client

origin
server

2: Application Layer 36

More about Web caching

3 Cache acts as both client Wh_y Web caching?

and server 7 Reduce response time for
O TYPICC(”Y cache is inSTC(”ed C|ien1‘ peques'r.

by ISP (university,
company, residential ISP)

A Reduce traffic on an
institution’s access link.

3 Internet dense with caches
enables "poor” content
providers to effectively
deliver content (but so
does P2P file sharing)

2: Application Layer 37

Caching example

O

O

. origin
Assumptions @ @ @ servers

average object size = 100,000

Internet _@
avg. request rate from
institution's browsers to origin ==
servers = 15/sec
delay from institutional router 1.5 Mbps
access link

to any origin server and back
to router =2 sec

institutional
network @ 10 Mbps LAN

a
a
a

Conseguences |
utilization on LAN = 15% @@ @

utilization on access link = 100%

total delay = Internet delay + institutional
access delay + LAN delay cache

2 sec + minutes + milliseconds
2: Application Layer 38

Caching example (cont)

: : origin
Pos.5|ble solution | @ @ @ servers
7 increase bandwidth of access

link to, say, 10 Mbps IE::Lfet _@

Consequences

O utilization on LAN = 15% =)

O utilization on access link = 15%

0 Total delay = Internet delay + cllgcAeAsbsplsink
access delay + LAN delay rtution

= 2 sec + msecs + msecs ins
7 often a costly upgrade network @ 10 Mbps LAN

institutional
cache

2: Application Layer 39

Caching example (cont)

Install cache
O suppose hit rate is .4

Consequence

3 40% requests will be
satisfied almost immediately

O 60% requests satisfied by
origin server

O utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec

O total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
milliseconds < 1.4 secs

origin
servers

i 4 4
T

£

1.5 Mbps
access link

institutional
network @ 10 Mbps LAN

ol

institutional

cache

2: Application Layer 40

Conditional GET

3 Goal: don't send object if
cache has up-to-date cached
version

3 cache: specify date of
cached copy in HTTP request
If-modified-since:
<date>
O server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not
Modified

cache

server

—

HTTP request msg

If-modified-since:

<date>

- object

hot

HTTP response
HTTP/1.0
304 Not Modified

— modified

HTTP request msg

If-modified-since:

<date>

object

HTTP response
HTTP/1.0 200 OK

<data>

- modified

2: Application Layer 41

